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Abstract: Elevated concentrations of toxic cationic aluminum (Ali) are symptomatic of terrestrial and freshwater acidification
and are particularly toxic to salmonid fish species such as Atlantic salmon (Salmo salar). Speciated metal samples are rarely
included in standard water monitoring protocols, and therefore the processes affecting Ali dynamics in freshwater remain
poorly understood. Previous analysis of Ali concentrations in Nova Scotia (Canada) rivers found that the majority of study
rivers had concentrations exceeding the threshold for aquatic health, but a wide‐scale survey of Ali in Nova Scotia has not
taken place since 2006 (Dennis, I. F., & Clair, T. A., 2012, Canadian Journal of Fisheries and Aquatic Sciences, 69(7),
1174–1183). The observed levels of dissolved aluminum in Atlantic salmon (Salmo salar) rivers of Atlantic Canada have
potential serious and harmful effects for aquatic populations. We present the findings of the first large‐scale assessment of
the Ali status of Nova Scotia rivers in 17 years; we measured Ali concentrations and other water chemistry parameters at 150
sites throughout the Southern Uplands region of Nova Scotia from 2015 to 2022. We found that Ali concentrations exceeded
toxic thresholds at least once during the study period at 80% of the study sites and that Ali concentrations increased during
the study period at all four large‐sample study sites. Modeling of relationships between Ali concentrations and other water
chemistry parameters showed that the most important predictors of Ali are concentrations of the dissolved fractions of Al,
iron, titanium, and calcium, as well as dissolved organic carbon and fluoride. We developed a fully Bayesian linear mixed
model to predict Ali concentrations from a test data set within 15 μg/L. This model may be a valuable tool to predict Ali
concentrations in rivers and to prioritize areas where Ali should be monitored. Environ Toxicol Chem 2024;00:1–12. © 2024
The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Cationic aluminum (Ali) is toxic to salmonids, and increased

concentrations of these aluminum (Al) species are one of the
most lethal effects of terrestrial and freshwater acidification.
Geology is a major determinant of stream water quality within a
drainage basin. The third most common element on the surface
of the earth is Al, making it a common constituent of surface
water chemistry. It can be toxic to aquatic organisms in cir-
cumneutral waters (Gensemer & Playle, 1999), with the Ali

species, such as Al3+, Al(OH)2
1+, and Al(OH)2+, considered the

most labile and therefore the most toxic. These positively
charged Al species bind to negatively charged fish gills and
cause morbidity and mortality through suffocation (Exley et al.,
1991), reduce nutrient intake at gill sites, and alter blood
plasma levels (Nilsen et al., 2010). The effects of sublethal ex-
posure to freshwater Al elicit osmoregulatory impairment
(Monette & McCormick, 2008; Regish et al., 2018), which
reduces survival in the hypertonic marine environment
(McCormick et al., 2009; Staurnes et al., 1996).

Burning of fossil fuels has resulted in the acidification of soils
and surface waters during the last century through acid deposi-
tion (see Kerekes et al., 1986), which has led to increased con-
centrations of toxic Ali in soils and drainage waters. Following
reductions in anthropogenic sulfur emissions in North America
and Europe, the acidification problem was widely considered
solved. Many studies observed steady improvements in stream
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chemistry (Evans et al., 2001; Monteith et al., 2014; Skjelkvåle
et al., 2005; Stoddard et al., 1999; Warby et al., 2005), including
reduced concentrations of Al in the United States (Baldigo &
Lawrence, 2000; Buchanan et al., 2017; Burns et al., 2006) and
Europe (Beneš et al., 2017; Davies et al., 2005; Monteith et al.,
2014). However, recent evidence highlights delayed recovery
from acidification in certain regions with slow‐weathering ge-
ology (Houle et al., 2006; Warby et al., 2009; Watmough et al.,
2016), including Nova Scotia, Canada (Clair et al., 2011; Sterling
et al., 2020). This raises questions about the possibility of ele-
vated and/or increasing Al concentrations in freshwater systems.

Previous research has shown widespread increases in total
Al (Alt) in Nova Scotia (S. Sterling et al., unpublished data);
however, a knowledge gap exists as to which species of Al are
driving these trends—Ali or the less toxic organically com-
plexed Al (Alo). The concentration at which Ali becomes toxic to
aquatic organisms is dependent on pH, temperature, ionic
strength, concentrations of base cations, and the presence of
dissolved organic matter (Gensemer & Playle, 1999). Some of
this complexity has been recently addressed by advanced
modeling, such as biotic ligand models (Santore et al., 2018),
but it remains difficult to select a single threshold to guide
interpretation of data and the creation of regulatory limits. In
the present study we assume a toxic threshold of 15 μg/L, which
Kroglund et al. (2007) showed negatively impacts anadromous
Atlantic salmon in acidic conditions similar to those of our
Nova Scotia study. An earlier study of Al concentrations in Nova
Scotia led to the discovery that concentrations of Ali in Nova
Scotia rivers currently exceed this assumed toxic threshold for
aquatic health of 15 μg/L (Dennis & Clair, 2012); however, no
studies of Ali concentrations in Nova Scotia have been sufficiently
long term to determine speciated temporal trends.

The processes that affect Ali dynamics remain poorly un-
derstood due to limited sampling of speciated Al. Speciated
sampling can be time‐consuming and expensive, and is not
often included in regular water chemistry monitoring programs
(Driscoll & Schecher, 1990). Speciation of Al is complex and
mostly determined by pH and the presence or absence of or-
ganic material (typically measured as dissolved organic carbon
[DOC]; Santore et al., 2018). The pH is generally negatively
correlated with Ali concentrations (Campbell et al., 1992;
Kopáček et al., 2006; Kroglund et al., 2001; Seip et al., 1989;
Teien et al., 2006), because lowered pH increases the solubility
of secondary minerals containing Al. Previous studies have also
shown that Al concentrations are positively correlated with
DOC concentrations (Campbell et al., 1992; Kopáček et al.,
2006). Previous modeling has shown that DOC and water
temperature (Tw) are the most significant predictors of Ali
concentrations (Sterling et al., 2020), but this model needs to
be improved with a larger sample size. The previous model was
built from a data set containing 10 sites with 5 to 47 samples
collected at each site.

Several programs have been developed to model aqueous
Ali concentrations, such as ALCHEMI, WHAM, and Visual
MINTEQ (see Cory et al., 2007; Sjöstedt et al., 2010; Tangen
et al., 2002). These models are based on the thermodynamic
relationships that control the behavior and speciation of

aqueous Al (Gustafsson, 2020; Schecher & Driscoll, 1995;
Tipping, 1998). While the thermodynamic constants for in-
organic complexes are typically well understood, reactions in-
volving organic complexation are more difficult to quantify and
can lead to poor precision and considerable uncertainty in
chemical equilibrium modeling (Driscoll & Schecher, 1990;
Schecher & Driscoll, 1995; Sjöstedt et al., 2010).

We aimed to complete the first large‐scale assessment of Ali
concentrations with repeated measurements in Nova Scotia.
We built on a one‐sample large‐scale survey in 2006 (Dennis &
Clair, 2012), to detect temporal trends in speciated Al con-
centrations as well as to determine potential predictors of Ali
concentrations and use these to build a simple empirical model
to increase our understanding of the factors affecting Ali
dynamics in dilute, acidified freshwaters.

MATERIALS AND METHODS
Study area

We surveyed Ali and other water chemistry parameters at
150 sites in 18 watersheds across the Southern Uplands region
of Nova Scotia (Figure 1). Large‐sample (2015–2022) water
chemistry measurements were conducted at four catchments:
Mersey River, Moose Pit Brook, Maria Brook, and Brandon Lake
Brook (Table 1). A “snapshot” of the water chemistry con-
ditions was captured at the remaining sites, with 1 to 54 sam-
ples being collected at each site between 2020 and 2022. The
four major large‐sample study catchments and the majority of
the “snapshot” sites are predominantly forested and drain
slow‐weathering, base‐cation poor bedrock, producing soils
with a low acid‐neutralizing capacity (Langan & Wilson, 1992;
Tipping, 1989). The catchments also have relatively high
aquatic DOC concentrations (Ginn et al., 2007) associated with
the abundant wetlands in the region (Clair et al., 2008; Gorham
et al., 1986; Kerekes et al., 1986). Due to this combination of
characteristics, the study rivers are acidic (mean pH of 4.9),
dilute (mean specific conductance (SPC) of 38 μS/cm), and
have relatively high levels of organic acidity (mean DOC
concentration of 11mg/L).

Data collection and analysis
We measured Ali concentrations and other water chemistry

parameters at the sample locations, including pH, Tw, SPC, and
concentrations of constituents such as dissolved metals and
DOC. Measurements were taken throughout the year from
2015 to 2021 at Mersey River, Moose Pit Brook, Maria Brook,
and Brandon Lake Brook, and measurements were taken from
March to December during 2020 to 2022 at all other sample
locations. Most study rivers were at least partially ice covered
during the winter months.

Sampling events comprised grab samples for laboratory
analysis and in situ measurements of pH, Tw, and SPC. We
calculated Ali as the difference between dissolved Al (Ald) and
Alo, following Dennis and Clair (2012), Tangen et al. (2002), and
Sterling et al. (2020; Equation 1). Speciating metals samples in
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the field reduces errors caused by changes in temperature and
pH during transport from field to laboratory.

= −Al Al Ali d o (1)

We measured Ald as the Al concentration of a sample passed
through a 0.45‐μm polyethersulfone filter. We measured Alo as

the eluate from passing water through a 3‐cm negatively charged
cation exchange column (Bond Elut Jr. Strong Cation Exchange
Column). The columns were preconditioned with 30mL of
0.4mol/L ammonium acetate buffer at pH 5, followed by a rinse
with 30mL of sample water, following previous studies (Dennis &
Clair, 2012; Tangen et al., 2002). Water was passed through the
cation exchange column at a rate of less than 60 drops/min, to

FIGURE 1: Locations of large‐ and small‐sample sites and median Ali concentration at each site during the study period (2015–2022).
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avoid underestimating Ali (Tangen et al., 2002). From this
method, Alo was operationally defined as the nonlabile, organ-
ically complexed species of Al, and Ali was defined as the
cationic species of Al (e.g., Al3+, Al(OH)2

1+, Al(OH)2+). This
speciation process was carried out in the field.

Samples to be analyzed for metal content as just described
were collected using sterilized polyethylene syringes into steri-
lized polyethylene tubes (15mL). All metal samples were filtered
in the field and preserved with nitric acid (HNO3) within 24 h of
arriving at the laboratory. Samples analyzed for DOC, anion
content, and physical parameters were not filtered in the field
and were collected in sterilized amber glass or polyethylene
bottles (1 L). All samples were kept cooled to a temperature of
4 °C during transport to the laboratory and were delivered within
48 h of being collected. Laboratory analytical methods are out-
lined in the Supporting Information, Appendix A.

Some samples analyzed for organic carbon content were not
filtered in the laboratory; however, the suspended loads in
rivers with similar characteristics to the study rivers are typically
very low, and it has been established that particulate matter
typically contributes <5% of total organic carbon (TOC; Clair
et al., 2008; Laudon et al., 2001). We therefore used TOC as a
proxy for DOC in these cases, as has been done in previous
freshwater Al modeling studies (see Cory et al., 2007). All
samples analyzed for organic carbon content are grouped here
and reported as DOC.

In situ measurements of pH, Tw, and SPC were taken using a
portable water chemistry sonde (YSI ProQuatro). The sonde
was calibrated at a minimum of once a week, typically the day
before samples were collected.

Temporal trends were detected using the Mann–Kendall
trend test from the R package “Kendall” (McLeod, 2022), which
tests for monotonic trends in time series based on the Kendall
rank correlation. Time series plots were smoothed using the
locally estimated scatterplot smoother method. Independent
linear correlations were detected using the Kendall's tau test.
These statistical analyses were carried out in R Ver. 4.1.2.

Bayesian linear mixed modeling
We built a fully Bayesian linear mixed model (BLMM) to

predict Ali concentration. Missing and left‐censored values
(nondetects) were imputed in one step during model fitting by
treating them as parameters; nondetects were constrained with
an upper bound equal to the detection limit. That is, each of

the 4000 posterior samples included a different imputed value
for each missing and left‐censored value.

We split the data into a training set, used to fit the model,
and a test set, used to simulate the model's predictive per-
formance on future observations. To avoid issues of non-
independence between the training and test sets that might
negatively bias the test set error (Kapoor & Narayanan, 2023),
we chose a temporal split of the training and test sets. That is,
the test set comprised the most recent 20% of observations
from sites with at least five observations. The remaining 80%
comprised the training set.

We selected (1) variables having a Pearson correlation with
Ali in the training set greater than 0.1, and (2) supplementary
variables used to predict the missing values in the predictors of
Ali (see the equation set following). We excluded variables that
were >50% missing or censored. The following variables were
selected as predictors: Ald, DOC, color, pH (sonde), temper-
ature (sonde), sulfate (SO4), alkalinity, fluoride (F), and dis-
solved fractions of calcium (Cad), titanium (Tid), iron (Fed),
cerium (Ced), and lithium (Lid). All variables were scaled to have
zero mean and unit standard deviation.

The i Ali concentrations, yi, were predicted using the
following equations:

Likelihood:

∼ μ σ ν( )y T , ,i i

Model for μi:

μ α β= + Xi sitej

Model for missing values:

μ σ~ ( )p T v p, , for each predictorp p p

Model for μp:

β=Al DOCd DOC

β=Ti Ald Ti dd

α=DOC DOC

β=Color DOCcolor

β=Fe DOCd Fed

β=Ce Fed Ce dd

β=pH AlpHsonde d

α=Cad Cad

TABLE 1: Study site characteristics for large‐sample study sites

Site
Watershed
area (km2)

Temporal range
of samples No.

Dominant
bedrock type

MB 0.47 2016–2021 32 Granite
BLB 1.4 2016–2022 41 Sandstone/slate
MPB 15.8 2015–2021 57 Granite/slate
MR 292.8 2015–2021 61 Granite

BLB= Brandon Lake Brook; MB=Maria Brook; MPB=Moose Pit Brook; MR=
Mersey River.

4 Environmental Toxicology and Chemistry, 2024;00:1–12—Hart et al.
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γ= + ( )f tTemperature

( ) =f t Z bs s

β=SO Ca4 SO d4

β=Alkalinity CaAlkalinity d

β= FLid Lid

α=F F

Priors:

σ σ σ σ ~ ‐ ( )α T, , , Half 0, 2.5, 3p b

~ ( )v v, Gamma 2, 0.1p

α σ~ ( )αN j0, for in 1 … 150sitej

β τ~ ( )N 0,

τ ~ ‐ ( )Half Cauchy 0, 1

β ~ ( )μ N 0, 1
p

σ~ ( )b N 0,s b

where N represents the Gaussian distribution with mean μ and
standard deviation σ, T represents the t‐distribution with μ, σ, and
v representing the degrees of freedom. The parameter αsitej is a
random intercept centered at α̅, X is the linear model design
matrix, and β is a vector of model coefficients, centered at zero
with standard deviation τ. The hierarchical Gaussian prior on β
helps to stabilize the estimates of multicollinear predictors (Hastie
et al., 2009), and also shrinks coefficient estimates toward zero,
which has a similar effect to a multiple comparisons correction
(Gelman et al., 2012). Supporting Information, Figure S3, in
Appendix B shows the correlations between variables included
in the model. In the missing value model for temperature,
the function f(t) represents a cyclic cubic regression spline
(Wood, 2017) with penalized coefficients bs and basis function
matrix Zs. The variable t represents ordinal day.

Missing and left‐censored values (nondetects) were mod-
eled as parameters and sampled from the joint posterior during
model fitting, along with the regression coefficients and the
parameters used to predict missing values in new observations
(Bürkner, 2017; McElreath, 2020). Left‐censored values were
constrained to fall below the respective censoring limits.

Model code was written in Stan (Stan Development Team,
2023) using a template generated in brms (Bürkner, 2017,
2018). Several other R packages were used for data cleaning and

visualization (Firke et al., 2023; Fischetti, 2022; Grolemund &
Wickham, 2011; Kay, 2023; Pedersen, 2022; Ram et al., 2018;
Vaughan et al., 2022; Wickham & Bryan, 2023; Wickham
et al., 2019; Wilke & Wiernik, 2022).

RESULTS AND DISCUSSION
Status of Ali concentrations in Nova Scotia

The assumed toxic threshold of 15 μg/L for Ali concen-
trations was exceeded at 120 of the 150 study sites (80%) at
least once during the study period. Median Ali concentrations
ranged from 1.1 to 76.3 μg/L across all sites (Figure 1), with the
median concentration exceeding the toxic threshold at 99 of
the 150 sites (66%). For many (~70%) of these sites, sample
collection timing was limited to the window of Atlantic salmon
(Salmo salar) smoltification (typically early April to early June).
Exceedances of Ali during this window would have a large
negative impact on salmon smolts because they undergo rapid
physiological transformation and experience the osmor-
egulatory demands associated with anadromy (Monette &
McCormick, 2008; Staurnes et al., 1996). The median Ali con-
centration at all four large‐sample study sites also exceeded
the toxic threshold (Table 2).

At the four large‐sample study sites, Ali concentrations
exceeded the toxic threshold in 67.2% to 97.4% of samples,
depending on the site (Table 2). Over the entire large‐sample
data set, Ali concentrations significantly increased from the start
to the end of the study period (2015–2022; Table 3). Within
individual sites, Ali concentration increased at all four sites;

TABLE 2: Median and standard deviation values for select water
chemistry parameters for large‐sample study sites

Site Variable Median SD

MB Ali (μg/L)a 44.5 28.5
Alo (μg/L) 329 110
Ald (μg/L) 364 123

DOC (mg/L) 12.1 5.61
Cad (mg/L) 1.60 0.366

pH 4.65 0.618
BLB Ali (μg/L)a 46.4 36.7

Alo (μg/L) 362 102
Ald (μg/L) 420 111

DOC (mg/L) 15.1 4.44
Cad (mg/L) 1.12 0.293

pH 4.43 0.452
MPB Ali (μg/L)a 21.0 16.2

Alo (μg/L) 247 101
Ald (μg/L) 260 111

DOC (mg/L) 17.6 7.70
Cad (mg/L) 0.890 0.388

pH 4.23 0.394
MR Ali (μg/L)a 22.0 12.5

Alo (μg/L) 170 66.3
Ald (μg/L) 204 71.0

DOC (mg/L) 9.00 3.48
Cad (mg/L) 0.735 0.169

pH 4.72 0.513

aAli is a calculated value; all other parameters are directly measured.
BLB= Brandon Lake Brook; DOC= dissolved organic carbon; MB=Maria Brook;
MPB=Moose Pit Brook; MR=Mersey River.
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however, this increase was statistically significant (p< 0.05) only
at one site (Moose Pit Brook; Table 3 and Figure 2). Across the
entire data set and within each individual site, concentrations of
Alo and Ald significantly increased in all cases (Table 3 and
Figure 2). The only statistically significant change in the pro-
portion of Ali making up Ald (% Ali) occurred at Maria Brook,
where there was a decrease in this proportion (Table 3). These
trends indicate that the observed trend of increasing Ald con-
centrations is likely predominantly driven by increases in Alo, and
visualizing the frequency distribution of the different forms of Al
across all sites confirms that most of the Ald at the study sites is
comprised of Alo (Figure 3). However, concentrations of Ali are
still increasing at all sites, and the majority of samples had Ali
concentrations in exceedance of the toxic threshold for salmon.

Potential drivers of Ali concentrations
Concentrations of Ali were significantly correlated with

several other water chemistry parameters. When the entire
database and also only the large‐sample study sites were
considered, Ali concentrations were strongly positively corre-
lated with Ald, Tid, Fed, and DOC concentrations (Figure 4 and
Table 4) When the entire data set was considered, there were
also slight but significant positive correlations between Ali
concentrations and Tw and Ced concentrations; however, these
correlations became nonsignificant when the data set was fil-
tered to contain only the large‐sample study sites. Similarly,
when the entire data set was considered, Ali was significantly

TABLE 3: Results of Mann–Kendall test for temporal trends in
large‐sample study sites

Site Variable Tau p value

All large‐sample sites Ali 0.294 <0.0001
Alo 0.545 <0.0001
Ald 0.533 <0.0001
%Ali 0.037 0.4522

BLB Ali 0.184 0.0920
Alo 0.465 <0.0001
Ald 0.483 <0.0001
%Ali −0.058 0.5976

MB Ali 0.103 0.4173
Alo 0.492 0.0003
Ald 0.419 0.0008
%Ali −0.004 0.9871

MPB Ali 0.357 <0.0001
Alo 0.586 <0.0001
Ald 0.574 <0.0001
%Ali 0.129 0.1582

MR Ali 0.032 0.7226
Alo 0.480 <0.0001
Ald 0.428 <0.0001
%Ali −0.211 0.0166

Significant trends (p< 0.05) are bolded. Visual representations of select temporal
trends are shown in Figure 2. All concentrations of aluminum species are reported
in units of μg/L.
BLB= Brandon Lake Brook; MB=Maria Brook; MPB=Moose Pit Brook; MR=
Mersey River.

FIGURE 2: Ali, Alo, and Ald concentrations at large‐sample study sites
during the study period (2015–2022). Trend lines were smoothed using
the locally estimated scatterplot smoother (LOESS) method. BLB=
Brandon Lake Brook; MB=Maria Brook; MPB=Moose Pit Brook;
MR=Mersey River.
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negatively correlated with SO4 and Cad concentrations as well
as with pH; these correlations were nonsignificant when the
data set was filtered to contain only the large‐sample study
sites. Within only the large‐sample study sites, the correlation
between Ali and Cad concentrations was much stronger but
unexpectedly positively correlated.

The positive relationship between Ali and Ald was expected
because Ald is the source of Ali. The positive relationship be-
tween Ali and DOC has also been reported in previous studies
(Campbell et al., 1992; Sterling et al., 2020), although it is
widely believed that increased DOC levels protect from Al
toxicity (Cardwell et al., 2018; Gensemer et al., 2018). Previous
studies of metal concentrations in surface freshwaters have

found good correlation between Al and Fe concentrations
(Gaillardet et al., 2003; Pokrovsky & Schott, 2002), in agree-
ment with the relationship we observed. Titanium is a tetrava-
lent element that is generally assumed to be immobile during
weathering; however, migration of Ti has been observed in
organic‐ and iron‐rich rivers, and a strong positive correlation
between Ti and Fe has been observed in such rivers (Pokrovsky
& Schott, 2002). Cerium is another metal that appears to be
associated with Al and Fe concentrations in freshwater, having
been observed to be controlled by pH and DOC concen-
trations and to exhibit strong correlations with Fe and Al
(along with the other rare earth metals; Gaillardet et al., 2003;
Neal, 2005).

FIGURE 3: Frequency distribution plots of the concentrations of Ali, Alo, and Ald at all study sites.

FIGURE 4: Pearson correlation values among water chemistry parameters and Ali concentration at (A) all study sites and (B) only large‐sample study
sites, where orange polygons indicate a positive correlation with Ali and purple polygons indicate a negative correlation with Ali. Only correlations
that are statistically significant (p< 0.05) are visualized. Correlation data are listed in Table 4. Alk = alkalinity; DOC = dissolved organic carbon; Tw =
water temperature.

Toxic Al concentrations in salmon rivers—Environmental Toxicology and Chemistry, 2024;00:1–12 7

wileyonlinelibrary.com/ETC © 2024 The Author(s)

 15528618, 0, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/etc.5997 by C

ouncil of A
tlantic U

niversity, W
iley O

nline L
ibrary on [29/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://setac.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fetc.5997&mode=


The concentrations of these metals (Al, Fe, Ti, and Ce) in
stream water appear to be controlled by similar processes, and
thus they are highly inter‐related. The dissolved fraction of each
of these metals is correlated specifically with the cationic frac-
tion of Al (Ali; Table 5), meaning we can use the more com-
monly measured dissolved metal concentrations to predict the
rarely measured speciated forms of Al.

Previous modeling research conducted with a smaller subset
of the data set we used also found that Tw was one of the most
important predictors of Ali concentrations. Previous studies
(Hendershot et al., 1986; Sterling et al., 2020) hypothesized
that this positive relationship was caused by the role that
increased temperature plays in activating biological drivers that

mobilize Al (Gensemer & Playle, 1999; Santore et al., 2018). In
the present study, as in other studies, we observed a statisti-
cally significant negative correlation between pH and Ali con-
centrations, which agrees with our knowledge of how Al
speciation varies with pH, although Sterling et al. (2020) did not
find a significant relationship between pH and Ali concen-
trations (Campbell et al., 1992; DeForest et al., 2018;
Gensemer et al., 2018; Helliweli et al., 1983; Kopáček et al.,
2006; Kroglund et al., 2001; Lydersen, 1990; Seip et al., 1989;
Teien et al., 2006).

The observed negative relationship between SO4 and Ali
concentrations was unexpected, because SO4 is a product of
acid deposition and can be considered an indicator of acid-
ification status (see Driscoll & Wang, 2019; Strock et al., 2014).
There is also a significant positive relationship between SO4

and pH across all sites in our data set. Most of the SO4 con-
centrations at our study sites are very low (mean concentration
of 2.3mg/L across the entire data set), and the observed rela-
tionships indicate that SO4 is not a major contributor to the
acidity at these sites.

Our results are also consistent with previous research on Al
dynamics showing a phenomenon of “decoupling” between
base cation and Al concentrations when base cations were
extremely low (Ca concentrations below 1.4mg/L; Rotteveel &
Sterling, 2020). We hypothesize that the strong positive
relationship between Ali and Cad concentrations observed
at the large‐sample study sites is due to their extremely low
Cad concentrations (mean= 1.1mg/L, 75% of observations
<1.3mg/L) leading to this phenomenon of decoupling. Within
the larger data set, in which the Cad concentrations were
slightly higher (mean= 1.8mg/L), the relationship between
Ali and Cad was negative.

Using drivers to create a predictive model for
Ali concentrations

The strongest BLMM predictors of Ali concentrations were
Ald, DOC, Tid, Fed, and F concentrations (Figure 5 and Table 5).
Dissolved Al has the largest standardized coefficient, but other
predictors—particularly DOC and dissolved Ti—are influential.
These results are consistent with previous modeling studies
using WHAM, which found the most important variables to be
Al, pH, DOC, F, Fe, Ca, and Mg; Cory et al., 2007).

The median absolute error of training set predictions was
8 μg/L, with a 95% credible interval of 6.9 to 8.2 μg/L. The
median absolute error of test set predictions, used to simulate
prediction of future observations, was 13 μg/L, with a 95%
credible interval of 11.9 to 15 μg/L. Cumulative distribution
functions show that the model slightly overpredicts Ali at low
concentrations and slightly underpredicts Ali at high concen-
trations (Figure 6). Pearson correlations among posterior draws
representing the Ali model coefficients are visualized in the
Supporting Information, Figure S1, in Appendix B.

Of note is that within the BLMM, once all other variables
were accounted for, the relationship between DOC and Ali
switched to a negative correlation, as opposed to the positive

TABLE 4: Results of Pearson's test for correlation between Ali
concentration and various water chemistry parameters

Site Variable Pearson's r p value

All sites Ald 0.651 <0.0001
Cad −0.077 0.0458
SO4 −0.130 0.0010
Lid 0.075 0.1048

Alkalinity −0.042 0.3623
Ced 0.283 <0.0001
pH −0.164 <0.0001
Tw 0.188 <0.0001
F 0.041 0.3097

Fed 0.505 <0.0001
Tid 0.571 <0.0001

DOC 0.480 <0.0001
Large‐sample sites Ald 0.702 <0.0001

Cad 0.484 <0.0001
SO4 0.023 0.7597
Lid −0.077 0.5276

Alkalinity −0.013 0.9264
Ced 0.314 0.0750
pH −0.022 0.7667
Tw 0.015 0.8454
F 0.061 0.4349

Fed 0.520 <0.0001
Tid 0.580 <0.0001

DOC 0.384 <0.0001

Significant relationships (p< 0.05) are bolded. A visual representation of these
results is shown in Figure 4.
DOC= dissolved organic carbon; Tw = water temperature.

TABLE 5: Posterior medians of the standardized linear regression co-
efficients and their 95% credible intervals (2.5th–97.5th percentiles; Q)

Predictor Median (Q50) Q2.5 Q97.5

Ald (μg/L) 0.79 0.65 0.93
DOC (mg/L) −0.33 −0.49 −0.18
Tid (μg/L) 0.20 0.07 0.28
Fed (μg/L) 0.16 0.03 0.27
F (μg/L) −0.11 −0.23 −0.02
Tw (°C) 0.10 0.05 0.16
pH 0.08 0.02 0.14
Ced (μg/L) −0.07 −0.17 0.01
Alkalinity (mg CaCO3/L) −0.06 −0.12 −0.02
Lid (μg/L) 0.05 −0.02 0.13
SO4 (mg/L) 0.04 −0.08 0.15
Cad (mg/L) 0.03 −0.09 0.19
Color −0.01 −0.11 0.10

DOC= dissolved organic carbon; Tw = water temperature.
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correlation observed in the independent linear correlations.
Dissolved organic carbon can form nonbioavailable complexes
with Al, which may be a possible explanation for the negative
relationship (Driscoll & Schecher, 1990). The appearance of
F as a strong predictor of Ali concentrations in the model is also
of interest, given that there was no significant relationship
between F and Ali concentrations in the independent linear
correlations. Previous studies have observed F concentrations
to have a significant impact on Al abundance and speciation;
however, the negative relationship we observed was un-
expected because F typically forms inorganic complexes with
Al and has been observed to increase the proportion of Ali in
freshwater (Berger et al., 2015). This positive relationship
was observed to occur at high concentrations of F (median ~
1mg/L), while the average concentration of F in our data set
was only 0.03mg/L.

The BLMM can be used to predict Ali concentrations when it
is not directly monitored using more commonly measured pa-
rameters to within 15 μg/L. As when using any modeled values,
caution must be taken when applying predictions from this
model, which, furthermore, is not intended for causal inference.
Due to the highly variable nature of Al chemistry and its many
interactions with other water chemistry parameters, the BLMM
will likely perform most effectively when used to make pre-
dictions in rivers with similar chemistry to those in our data set,
that is, acidic (mean pH of 4.9 across the data set), dilute (mean
SPC of 38 μS/cm), and with relatively high levels of organic
acidity (mean DOC concentration of 11mg/L). These conditions
are common and widespread in Nova Scotia due to the re-
gion's unique combination of historic heavy acid deposition,
low‐buffering bedrock that is slow‐weathering and nutrient‐
poor, and high organic acidity from wetlands. The model we
present is curated specially to handle these conditions, while
previous more comprehensive models may lose accuracy in
extreme conditions such as low pH or high Ali concentrations
(see Cory et al., 2007; Sjöstedt et al., 2010). To further test the
model, we recommend future additional sampling of rivers that
do not meet these specific conditions, to test how robust this
model to a wider variation in key explanatory variables.

The BLMM may be limited by the distribution of samples
collected throughout the year. Sample collection dates are
heavily skewed toward the spring months of April and May,
with a smaller but even number of samples collected during the
summer and fall, and very few samples collected during the
winter months (Supporting Information, Figure S2). Previous
study of Al chemistry in Nova Scotia has shown that Al dy-
namics vary seasonally (Rotteveel & Sterling, 2020), so the data
set we used may be missing a portion of the Al picture and
should likely not be used for making winter predictions.

Discharge (i.e., base flow vs. high flow) plays an important
role in water chemistry, but we unfortunately did not have ac-
cess to consistent discharge measurements for our sites during

FIGURE 5: (A) Observed Ali concentrations and corresponding model predictions in the training and test sets. Horizontal line segments represent
left‐censored values; they extend from the left edge of the plot to the censoring limit. (B) Posterior probabilities of the regression coefficients; points
represent posterior medians, and heavy and light horizontal lines span the middle 66% and 95% of the posterior distributions, respectively.

FIGURE 6: Empirical cumulative distribution functions of the observed
Ali concentrations and of a set of 100 posterior predictions. The Ali
concentrations are overpredicted at low concentrations and under-
predicted at high concentrations.

Toxic Al concentrations in salmon rivers—Environmental Toxicology and Chemistry, 2024;00:1–12 9

wileyonlinelibrary.com/ETC © 2024 The Author(s)

 15528618, 0, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/etc.5997 by C

ouncil of A
tlantic U

niversity, W
iley O

nline L
ibrary on [29/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://setac.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fetc.5997&mode=


the study period. Because we did not have discharge data,
the concentration data are raw (not discharge corrected),
meaning we are not able to detect biases related to hydro-
graph position. We strongly recommend that any future mod-
eling study include the collection of discharge data and
the stratification of water chemistry data by flow conditions to
improve results.

An additional limitation of our study is the length of the data
record. Although we did observe significant trends, they are
limited due to the brevity of the data record (6 years). This may
also affect the certainty of the correlations that we found. We
recommend extended monitoring periods for future research.

Although complex chemical equilibrium models are im-
portant tools, the empirical model we present is relatively
simple to understand and use with previously collected water
chemistry data and could make modeling of Ali concentrations
more widely accessible to groups such as community water-
shed organizations. It is unrealistic for these groups, as well as
government branches and academic researchers, to include
speciated Al analysis in their regular sampling programs,
but this model could be used to prioritize sites and regions
where this type of sampling should be undertaken. This will
be especially important in chronically acidified regions such
as Nova Scotia, where toxic concentrations of Ali may be
widespread.

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5997.
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